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1 Overview of Important Properties

Let’s say that we had some data that lie on non-linear manifolds such that linear classification
isn’t very effective. We can send the data to a higher dimension space such that the data
now lie on linear manifolds in the higher dimension space. One of the broad motivations
behind RKHS is to be able to analyze and interpret the embedded data. We now introduce
some fundamental terminology.

Definition 1.1 ((Reproducing) Kernel) Say that our data is in a set X . A function
k : X × X → F is a kernel if it satisfies the following properties:

1. (Symmetric) For all x, y ∈ X , k(x, y) = k(y, x).

2. (Positive definite) For any {x1, . . . , xn} ⊆ X , the n× n Gram matrix K where Kij =
k(xi, xj) is positive semi-definite (semi-definite iff data is linearly dependent). Equiv-
alently: for all v ∈ Rn, v>Kv ≥ 0.

A kernel is furthermore a “reproducing” kernel of a space H if for all x ∈ X , k(x, ·) ∈ H
and for any function f ∈ H,

〈f(·), k(x, ·)〉H = f(x).

Definition 1.2 (Canonical Feature Map) Given set X that contains our data, we define
the canonical feature map (a function that embeds the data to a higher-dimension space) to
be

Φ : X → H, Φ(x) = k(x, ·)
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The order that we introduced these definitions is slightly deceptive: one can be characterized
using the other and many things become tautologies. For example, we can actually construct
a corresponding Hilbert space H given a reproducing kernel by taking the closure of all finite
linear combinations of k(x, ·):

H :=
{ m∑

i=1

cik(xi, ·) : xi ∈ X , ci ∈ F
}
≡ span

(
k(xi, ·), xi ∈ X

)
.

The closure is necessary because span may not result in a closed linear subspace in infinite-
dimensions. We further drive in the equivalence between feature maps and reproducing
kernels: if k(x, x) := 〈φ(x), φ(x)〉 is a reproducing kernel, then

k(x, y) ≡ 〈k(x, ·), k(·, y)〉
=⇒ k(x, x) ≡ 〈k(x, ·), k(·, x)〉

=⇒ φ(x) ≡ k(x, ·),

in other words, by defining a reproducing kernel from a given feature map, the feature map
becomes the canonical feature map of the corresponding RKHS.

1.1 A Trio of Important Theorems

We have shown earlier than given a PSD (positive symmetric definite) kernel, we can con-
struct a Hilbert space such that the kernel is a reproducing kernel. One might wonder,
similar to the bijective relationship between feature maps and kernels, whether there is a
bijective relationship between a PSD kernel and RKHS’s. The following theorem establishes
the bijectivity.

Theorem 1.3 (Moore-Aronszajn [1]) Given a symmetric, positive definite kernel k on a
set X , there is a unique Hilbert space of functions on X for which k is a reproducing kernel.

Proof: Most of the proof is by construction. We construct a Hilbert space H0 by taking the
linear span of vectors k(x, ·), where x ∈ X . We define the inner product on H0 to be〈 n∑

i=1

aik(xi, ·),
m∑
j=1

bik(xj, ·)
〉

=
n∑
i=1

ai

〈
k(xi, ·),

m∑
j=1

bik(xj, ·)
〉

=
n∑
i=1

m∑
j=1

aibjk(xi, xj).

We see that this inner product is well-defined and non-degenerate thanks to the symmetricity
and positive-definiteness of k(x, y). We then consider the completion of H0; call it H.
Observe that even if H is not separable, we know that each element in H can be represented
as a sum of at most countably many orthonormal basis elements (I can’t recall the name of the
theorem). Therefore, we can express any element of H in the form: f(·) =

∑∞
i=1 cik(xi, ·),
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where
∑n

i=1 a
2
i k(xi, xi) < ∞. All such f are well-defined thanks to the Cauchy-Schwarz

inequality. We can verify that k(x, y) is a reproducing kernel on H:

〈f(·), k(x, ·)〉 =
〈 ∞∑

i=1

cik(xi, ·), k(x, ·)
〉

=
∞∑
i=1

cik(xi, x) = f(x).

To show that H is unique, We consider G where k(x, y) is also a reproducing kernel. Observe
that by our construction of H, G ⊃ H. Since H is complete, H must be a proper, closed
linear subspace of G. We can therefore consider the decomposition G = H ⊕H⊥. For any
element in G we can write it as g(·) = fH(·) + fH⊥(·). Observe that

〈g(·), k(x, ·)〉 = 〈fH(·) + fH⊥(·), k(x, ·)〉
= 〈fH(·), k(x, ·)〉+ 〈fH⊥(·), k(x, ·)〉
= 〈fH(·), k(x, ·)〉+ 0

= fH(x).

Observe that the only way for g to fulfill the reproducing property is if fH⊥(·) = 0, which
implies that H⊥ is trivial. Therefore G = H, establishing the uniqueness of H as the RKHS
associated with the kernel k(x, y). �

One benefit of embedding data into a Hilbert space is the fact that we have access to
spectral theorems. Familiar to those who work with differential equations, given a PSD
function k : X ×X → R that is jointly continuous on a compact domain X , we can define a
bounded linear (integral) operator on the Hilbert space L2(X ): Tk(f) :=

∫
X k(·, y)f(y)dµ(y).

Through this interpretation of the kernel function, we can characterize the corresponding
RKHS and feature map through the eigen-decomposition of the integral operator. Mercer’s
theorem formalizes this notion:

Theorem 1.4 (Mercer) Let X be a compact space equipped with a positive, finite Borel
measure µ. Suppose k : X × X → R is a jointly continuous, positive definite, symmetric
function. We define the integral operator Tk(·) ∈ B(L2(X ), L2(X )) the space of bounded
linear operators L2(X )→ L2(X ):

Tk(f) =

∫
X
k(·, y)f(y) dµ(y),

Then Tk(f) can be diagonalized to yield a countable set of eigenvalues {λi} and corresponding
eigenvectors {ψi} such that limi→∞ λi → 0 and {ψi} ⊂ L2(X ) form an orthonormal basis for
L2(X ). We can then write

k(x, y) =
∞∑
i=1

λiψi(x)ψi(y)

k(·, ·) =
∞∑
i

λi(ψi ⊗ ψi).
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Additionally, the corresponding RKHS can be expressed as

H =
{
f ∈ L2(X ) :

∞∑
i=1

〈f, ψi〉2

λi
<∞

}
,

where the inner product is defined: 〈f, g〉H =
∑∞

i=1
〈f,ψi〉〈g,ψi〉

λi

Proof idea: Almost all the listed properties are a result of the extremely nice properties
of the operator Tk. Observe that since k(x, y) is symmetric kernel function, and L2(X )
is separable, Tk is a self-adjoint Hilbert-Schmidt operator, which is in turn compact. The
spectral theorem for self-adjoint compact operators tells us that the spectrum is real and
accumulates only at 0, while the corresponding eigenvectors form an orthonormal basis for
L2(X ). Furthermore, since k(x, y) is positive definite, the eigenvalues must all be positive.
The decomposition of k is analogous to the diagonalization and representation of a positive
definite matrix as a sum of projection operators, which is where we get:

k(·, ·) =
∞∑
i

λi(ψi ⊗ ψi)

k(x, y) =
∞∑
i=1

λiψi(x)ψi(y).

As for the representation of the RKHS: H =
{
f ∈ L2(X ) :

∑∞
i=1

〈f,ψi〉2
λi

<∞
}

, we essentially

get this by re-defining our feature maps φi :=
√
λiψi. �

One might wonder how blowing up the dimensionality of the data could ever be computation-
ally sensible. While not the end-all-be-all solution to that problem, the following theorem
at least reduces tells us the infinite-dimensional problem can be equivalently formulated in
finite dimensions without sacrificing any accuracy.

Theorem 1.5 (Representer Theorem) Let k : X × X → R be a kernel and H be its
corresponding RKHS. Given sample data (x1, y1), . . . , (xn, yn) ⊂ X × R, a monotonically
increasing function g : [0,∞)→ R, and any empirical loss function `, we can express any

f ∗ = arg min
f∈H

(
`
(
f(x1), . . . , f(xn)

)
+ g(‖f‖H)

)
as a finite sum

f ∗(·) =
n∑
i=1

cik(xi, ·) ∈ span
(
k(x1, ·), . . . , k(xn, ·)

)
.

Proof: The proof follows from an appeal to orthogonality (praise Hilbert spaces). We consider
the subspace W ⊂ H generated by the span of k(xi, ·). Since we have finitely many k(xi, ·),
the subspace is closed. We may then decompose H = W ⊕W⊥ such that for any f ∈ H, we
can write it as

f(·) =
n∑
i=1

k(xi, ·) + r(·), r(·) ∈ W⊥.
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Now we observe that since H is a RKHS,

f(xj) = 〈f(·), k(xj, ·)〉

=
〈 n∑

i=1

k(xi, ·) + r(·), k(xj, ·)
〉

=
〈 n∑

i=1

k(xi, ·), k(xj, ·)
〉

+ 〈r(·), k(xj, ·)〉

=
n∑
i=1

k(xi, xj) + 0 since r(·) ∈ W⊥.

Notice that we could’ve set the residual term r in W⊥ to be anything and it would not have
affected the value of f evaluated at any xj. Keeping this in mind, we consider the second
term g(‖f‖H). Using the Pythagorean identity, we can re-write this:

g(‖f‖H) = g

(∥∥∥∥∥
n∑
i=1

k(xi, ·) + r(·)

∥∥∥∥∥
H

)

= g

(∥∥∥∥∥
n∑
i=1

k(xi, ·)

∥∥∥∥∥
H

+ ‖r(·)‖H
)
.

Observe that since g is a strictly monotonically increasing function, we strictly decrease its
value if we remove the residual term r. However, we must look toward the first term to make
sure we don’t somehow increase its value. Fortunately, we already established that the value
of f evaluated at xj is completely independent of r, so the value of the loss function is also
independent of r. Therefore, our best bet is to simply set r(·) = 0, which implies that the
optimal function f ∗ is in the span of k(xi, ·), i.e.

f ∗(·) =
n∑
i=1

cik(xi, ·) ∈ span
(
k(x1, ·), . . . , k(xn, ·)

)
. �

2 Universal Kernels

2.1 General Results

Everything in this section is derived from [3]. The motivation for universal kernels is
straightforward: we know by Moore-Aronsazjn that with each kernel we can generate a
unique RKHS, where elements in that RKHS can by definition be uniformly approximated
by k(xi, ·), where xi come from the input space X . This is about as much as we can say in
terms of the approximation power of a kernel when we must consider the whole input space
(say Rn). However, often times the actual inputs might not come from the entire space X ;
in fact, given certain scenarios, the actual subset of the input space from which inputs are
drawn might even be compact! One might now wonder: if we restrict our attention to a
compact subset of the input space, say Z ⊂ X , and consider the space of all continuous
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functions on just that compact subset endowed with the sup norm ‖·‖∞, denoted C(Z), now
can our kernel approximate any element of C(Z)? More formally, we denote

K(Z) := span(k(x, ·), x ∈ Z)

and we want to know if K(Z) is dense in C(Z). If it is dense, then we say the kernel k(x, y)
has the universal approximating property, and that k(x, y) is a universal kernel.

Lemma 2.1 If K(Z) is dense in C(Z), then in fact K(Z) = C(Z).

The lemma follows from the fact that K(Z) is defined to be a closed linear subspace.

Now we dive in headfirst to the functional analysis-y part of the paper. Suppose we are
given a kernel k : X × X → R, a feature map Φ : X → H, and the corresponding Hilbert
space H. To make claims about C(Z), we first have to understand its structure. I guess the
natural starting place for that is to establish the dual space of C(Z). Since Z is compact,
it is trivially locally compact Hausdorff and every continuous function over Z also trivially
has compact support (pre-image of Range\{0}). Therefore, by the Riesz-Markov-Kakutani
Representation Theorem, the continuous dual space of C(Z) is the space of regular Borel
measures−let us denote it B(Z). Linear functionals on C(Z) have the form: given v ∈ B(Z)

∀f ∈ C(Z), v(f) =

∫
Z

f(x) dv(x).

The norm of v ∈ B(Z) induced by C(Z) is known as the total variation of v:

TV (v) := sup
{ ∣∣∣∣∫

Z

g(x) dv(x)

∣∣∣∣ : ‖g‖Z ≤ 1, g ∈ C(Z)
∣∣∣}.

Going back to the Hilbert space H, given a measure v ∈ B(Z), we would now like to identify
the integral

∫
Z

Φ(x)dv(x) as an element of H. To do so, we must call upon our good friend
Riesz Representation Theorem. Let us define the (conjugate) linear functional: for each
h ∈ H,

L[h] :=

∫
Z

〈Φ(x), h〉 dv(x);

notice that L is bounded by the Hölder’s Inequality and the norms we defined on C(Z) and
B(Z):

‖L‖ ≤ ‖Φ‖∞ TV (v) <∞.

Since L is a bounded linear functional, Riesz Representation Theorem tells us that in fact
L is uniquely determined by an element w ∈ H such that L[h] can be re-written as

L[h] = 〈w, h〉H .

Notice that the only candidate for w is precisely the element
∫
Z

Φ(x) dv(x):

L[h] =

〈∫
Z

Φ(x) dv(x), h

〉
H

=

∫
Z

〈Φ(x), h〉H dv(x). (1)
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Note that the element
∫
Z

Φ(x) dv(x) depends on choice of v ∈ B(Z). Let us define a map
U : B(Z)→ H

U(v) =

∫
Z

Φ(x) dv(x). (2)

Plugging this back into 1 we get

〈U(v), h〉H =

∫
Z

〈Φ(x), h〉H dv(x).

Now if we set h = Φ(y), where y ∈ Z, we get the interesting result

〈U(v),Φ(y)〉 =

∫
Z

〈Φ(x),Φ(y)〉H dv(x) :=

∫
Z

k(x, y) dv(x).

This allows us to bound the norm of the operator U :

‖U(v)‖2H =

∫
Z

∫
Z

k(x, y)dv(y)dv(x)

=⇒ ‖U‖2 ≤ ‖K‖∞
‖U‖ ≤

√
‖K‖∞.

Since U is a linear operator that is bounded, it is also continuous. Nice!

We are now ready to prove a series of results that relate K(Z) and C(Z) to fundamen-
tal subspaces induced by the operator U . Let us denote the nullspace of U :

Null(U) := {v ∈ B(Z) : U(v) = 0}.

We also introduce the notion of an annihilator of S ⊆ C(Z). The annihilator contains all
linear functionals from the dual space B(Z) that are uniformly 0 when evaluated on S:

AnnC(Z)(S) := {v ∈ B(Z) :

∫
Z

f(x) dv(x) = 0 ∀f ∈ S}.

Observation 2.2 Since linear functionals are, well, linear, we observe that

AnnC(Z)(S) = AnnC(Z)(span(S)).

This further implies that two sets have the same annihilator if they belong to the same
subspace of C(Z).

Lemma 2.3 Suppose that Z is a compact set. Then

AnnC(Z)(K(Z)) = Null(U). (3)

Corollary 2.4 K(Z) = C(Z) if and only if U is injective.
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We introduce the following subspace of H:

Φ(Z) := span{Φ(x) : x ∈ Z} = span{k(x, ·) : x ∈ Z} ⊂ H,

Lemma 2.5 R(U) = Φ(Z).

Provided an orthonormal basis Γ = {γ1, γ2, . . . , γi, . . . } for H, we introduce a new subspace
of C(Z). Define the functions fγi ∈ C(Z) where for x ∈ Z, fγi(x) = 〈Φ(x), γi〉H (essentially
γi but restricted to Z). We then get a natural subspace of C(Z): 1

Ψ(Γ) := span{fγi : γi ∈ Γ}.

We are now ready to state a core theorem of the paper.

Theorem 2.6 Suppose Z is a compact subset of the input space X , k is a kernel with
corresponding feature map Φ, and Γ is an orthonormal basis for the RKHS H. Then

K(Z) = Ψ(Γ).

Since Ψ(Γ) is simply the span of the orthonormal basis functions restricted to Z such that
they belong to C(Z), we observe that the above theorem essentially tells us that a kernel
is universal if and only if its features are universal.

This is one way to characterize the universality of a given kernel. We can also look at
it from a more spectral perspective. Recall the corresponding Hilbert-Schmidt operator
given a positive-definite kernel symmetric kernel:

T [f ] =

∫
Z

k(·, y)g(y) dµ(y).

Lemma 2.7 Suppose Z is a compact set, k is a PSD kernel, and {λi}i∈N ⊂ R+ and Γ =
{φi}i∈N ⊂ L2(Z, µ) are the (positive) eigenvalues and orthonormal eigenvectors corresponding
to the diagonalization of the compact symmetric operator T such that Γ is a basis for H. If
further supp(µ) = Z, then K(Z) = C(Z) if and only if Ψ(Γ) = C(Z) 2.

Since the eigenvectors form an orthonormal basis for H, this lemma is simply an application
of the previous theorem. However, it does lead us to the following alternate characterization
of universal kernels:

Theorem 2.8 If supp(µ) = Z in the Hilbert-Schmidt operator we defined earlier, then
K(Z) = R(T ).

1Honestly the paper’s original notation for the following expression is pretty terrible and I’m pretty sure
it leads to an error that I will point out later.

2The paper originally read span{φi}i∈N = C(Z), which seems wrong because the span of the eigenvectors
should be the whole space H by the Spectral Theorem (the whole point of defining the operator T ).
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Proof: We must simply show AnnC(Z)K(Z) = AnnC(Z)R(T ). If v ∈ Ann[K(Z)], then for
each y ∈ Z ∫

Z

k(x, y) dv(x) = 0.

Since everything is continuous, we can use Fubini’s theorem to re-write∫
Z

(Tg)(x) dv(x) =

∫
Z

(∫
Z

k(x, y)g(y) dµ(y)

)
dv(x)

=

∫
Z

g(y)

(∫
Z

k(x, y)dv(x)

)
dµ(y)

=

∫
Z

g(y) · 0 dµ(y)

= 0.

This implies v ∈ Ann[R(T )].

To prove the other direction, let v ∈ Ann[R(T )]. By the set of equations above, we have
that for any g ∈ C(Z)∫

Z

(Tg)(x) dv(x) =

∫
Z

g(y)

(∫
Z

k(x, y)dv(x)

)
dµ(y) = 0.

Now we set g =
∫
Z
k(x, ·) dv(x) and see that this implies∫
Z

g(y)

(∫
Z

k(x, y)dv(x)

)
dµ(y) =

∫
Z

|g(y)|2 dµ(y) = 0.

However, since supp(µ) = Z, the integral is 0 if and only if g = 0, implying that v ∈
Ann[K(Z)]. �

We observe that this gives us another characterization of universal kernels that looks at
the range of the corresponding Hilbert-Schmidt operator. In other words, if R(T ) = C(Z),
then we know K(Z) = C(Z) and that our kernel is universal. I’m not sure what the immedi-
ate benefits of this representation are, but I have found work [4] that discusses reconstructing
a continuous integral operator from finite-dimensional data, i.e. matrices. May be unrelated
to universal kernels, but I guess I’ll give it a look later.

2.2 Notable Examples

The paper starts with an example that is rather close to heart: the dot product kernel.
Given an entire (holomorphic on the whole complex plane):

G(z) =
∞∑
i=0

cnz
n, cn > 0
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we define the kernel

k(x, y) = G(〈x, y〉) =
∞∑
i=0

cn 〈x, y〉n , x, y ∈ Cn.

It is not difficult to verify that the dot product kernel is a reproducing kernel, and that it
is universal on Cn and hence Rn. If we define our feature maps to be polynomial factors,
complex analysis (Runge’s Theorem and/or Stone-Weierstrass) tells us polynomials well-
approximate continuous functions (no poles). With similar reasoning, we can establish that
if the function G(z) was instead analytic on the unit disk D = {z ∈ C : |z| ≤ 1}, and
its power series expansion only contains positive coefficients, then the dot product kernel is
universal on the unit ball in n-dimensions.

Another example of a kernel that I was (still am) not familiar with is the “Schoenberg
kernel”, defined on the unit sphere Sn = {x ∈ Rn+1 : ‖x‖ = 1}. We consider the k-th degree
Gegenbauer polynomials: P n

k , k ∈ Z+, determined by the generating function

1

(1− 2zt+ z2)(n−1)/2
=
∞∑
k=1

P d
k (t)zk, z ∈ D, t ∈ [−1, 1].

Suppose that we have a sequence {ak} such that following sequence converges:

∞∑
k=1

akP
d
k (1) <∞.

This guarantees that the following function converges uniformly on [0, π]:

g(t) :=
∞∑
k=1

akP
d
k (cos(t)).

Recall that the (geodesic) distance between two points x, y ∈ Sn is

∆(x, y) = arccos(〈x, y〉).

The claim is that a jointly continuous function k : Sn×Sn → R is a kernel on Sn if and only
if it has the form:

k(x, y) := g(∆(〈x, y〉)), x, y ∈ Rn.

Furthermore, k is a universal kernel on Sn if and only if all ak > 0 in the definition of g(t)
above.

2.3 Translation Invariant Kernels

We conclude this final project with a discussion of translation invariant kernels, i.e. kernels
that have the form

k(x, y) = K(x− y), x, y ∈ Rn.
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where K is a continuous function on Rn. Notably, the Gaussian (radial) kernel is a translation
invariant kernel. Bochner proved that k is a kernel if and only if there is a unique finite Borel
measure µ on Rn such that K has the form

K(x) =

∫
Rn

ei〈x,y〉 dµ(y) ∀x ∈ Rn.

We observe that the measure µ determines what the kernel will look like. Naturally, we then
study the correspondence between the chosen measure and the universality of the resulting
kernel. Borrowing the notation established in the earlier parts, we set X = Rn and define the
Hilbert space H of all complex-valued functions defined on supp(µ) with the corresponding
inner product

〈f, g〉H =

∫
supp(µ)

f(x)g(x)dµ(x).

The natural feature map Φ : Rn → H is defined

Φ(x) := ei〈x,·〉, Φ(x)(y) = ei〈x,y〉.

We then define the set of exponential features

E(µ) := {Φ(x) : x ∈ supp(µ)}.

Just like for an arbitrary kernel, E(µ) is said to be universal if E(µ) dense in C(Z) for any
compact Z ⊂ Rn. We can ship in all the universality conditions established for the arbitrary
kernel. However, we get some additional properties that I will list here (their proofs follow
from some measure theory):

Proposition 2.9 Given Borel measure µ,

1. If supp(µ) has positive Lebesgue measure on Rn then the translation kernel k is uni-
versal.

2. If the continuous part of µ in its Lebesgue decomposition is non-zero then the translation
kernel k is universal.

These two items will help us prove the last, important result of the paper: for basically any
choice of measure, the Gaussian kernel is universal.

2.4 The Gaussian (Radial) Kernel

We define a special case of the Schoenberg kernels on Rn × Rn where

k(x, y) := g(‖x− y‖2), x, y ∈ Rn.

k is a kernel on Rn ×Rn for all n ∈ N if and only if there exists a finite Borel measure µ on
R+ such that

g(t) :=

∫
R+

e−txdµ(x). (4)
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Theorem 2.10 If the measure µ in 4 is not concentrated at 0, then the radial kernel k is
universal.

The proof seems pretty involved, and I’ll probably work through it eventually out of interest,
but as a result of the theorem, we have the following result:

Corollary 2.11 The following kernels are universal: α, β > 0

1. k(x, y) := e−α‖x−y‖
2

, x, y ∈ Rn

2. k(x, y) := (β + ‖x− y‖2)−α, x, y ∈ Rn.

The first kernel is our favorite Gaussian kernel.

3 Final Thoughts

This paper introduced a lot of core machinery to prove the good properties of many important
kernels, which has involved a lot of measure theory and functional analysis (cool stuff). Some
natural follow-up reading would be papers that actually need numerical bounds on how well
universal kernels perform, as it’s clear some have approximations that converge far faster than
others. Also, as mentioned in the paper, in practice there is some nuance in approximating
a function by the kernel or by its features, which is not something intuitively clear to me
right now. I also plan to write up some stuff on kernel ridge regression with Sobolev kernels
in my own time, which I will append here at some point.
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